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Figure S1. Topographic AFM image and corresponding cross-section for the gibbsite nanoplates. 
The insert scale bar is 500 nm.
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Figure S2. Gibbsite XRD pattern compared with simulated patterns incorporating anisotropic 
crystallite size and strain broadening.
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Figure S3. First 10 Å of 100 Å X-ray PDF fits for (a) gibbsite, Al(OH)3 and (b) boehmite, AlOOH 
nanoplate data.  Data are shown as black circles and fits are shown as orange lines.  The calculated 
Al-O, O-O, and Al-Al partial PDFs composing the respective models are shown below the data 
sets and fits, as purple, green and blue lines, respectively.   
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Figure S4.  Comparison of the 27Al MAS NMR spectra, a duplicate of the results in Figure 1 but 
plotted with the spectra of the dehydrated samples (dotted red traces) superimposed on the 
corresponding as-synthesized samples (solid black traces) to highlight the effect of the 
dehydration.  Only the expanded regions are shown. Labels are the same as those in Figure 1 of 
the text.  
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Figure S5. FTIR spectrum of (a) gibbsite and (b) boehmite.
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Figure S6. Mass loss (black line) and heat flow (blue line) curves for left: gibbsite and right: 
boehmite. Endotherm minima are accentuated with dashed lines.
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Figure S7. Nitrogen isotherms for (a) gibbsite and (b) boehmite.
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Figure S8. AFM image of gibbsite nanoplates on Si substrates to show these nanoplates 
aggregated along the [001] direction.
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Table S1 Crystal structure of gibbsite nanoplates, Al(OH)3, as determined from refinement of X-
ray PDF data between 1 and 100 Å.  Refined values are given with estimated standard deviation 
from refinement in parentheses. Parameters with a ‘*’ were constrained to be equivalent.

Al(OH)3      S. G. P121/c1      a =8.6645(7) Å, b = 5.0594(4) Å, c = 12.5281(19) Å, β=129.443(7)˚

l1 = 30(4) nm, l2 = 6(1) nm, delta1 = 1.457(11) Å-1, Rwp = 18.62%

Atom Wyck. x y z Occ. Beq (Å2)

Al1 4e 0.1718(5) 0.0200(7)  0.0050(3) 1 0.49(2)

Al2 4e 0.3320(4) 0.5231(5) -0.0001(2) 1 0.33(1)

O1 4e 0.0779(6) 0.1471(9)  0.3991(4) 1 0.63(1)*

O2 4e 0.0893(7) 0.1298(9)  0.1081(5) 1 0.63(1)*

O3 4e 0.2867(5) 0.7049(8)  0.1087(5) 1 0.63(1)*

O4 4e 0.3943(7) 0.1308(9)  0.3958(4) 1 0.63(1)*

O5 4e 0.4094(5) 0.2197(7)  0.1118(4) 1 0.63(1)*

O6 4e 0.7648(6) 0.1577(8)  0.1004(5) 1 0.63(1)*

Table S2 Crystal structure of boehmite nanoplates, AlOOH, as determined from refinement of X-
ray PDF data between 1 and 100 Å. Refined values are given with estimated standard deviation 
from refinement in parentheses.

AlOOH      S. G. CmCm      a =  2.86248(9)  Å, b = 12.19646(38) Å, c = 3.68675(10) Å

l1 = 50(2) nm, l2 = 20(3) nm, delta1 = 1.604(8) Å-1, Rwp = 14.18 %  

Atom Wyck. x y z Occ. Beq (Å2)

Al 4c 0 0.68119(3) ¼ 1 0.261(26)

O1 4c 0 0.29128(4) ¼ 1 0.354(62)

O2 4c 0 0.08242 (4) ¼ 1 0.492(21)
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Table S3.  Calculated Al−O and Al−Al distances (Å) from AIMD simulations of boehmite and gibbsite at 
298.15 K.  The thermal disorder parameters are presented as the uncertainty on the last digit, shown in 
parentheses.

Phase Site Al−O Al−O Al−O Al−O Al−O Al−O Al−Al Al−Al Al−Al

Boehmite 1
1.902 

(5)
1.911 

(6)
1.919 
(2)×2

1.986 
(4)×2

2.914 
(2)×2

2.923 
(20)×2

2.922 
(14)×2

Gibbsite 1
1.931 

(3)
1.945 

(3)
1.945 

(3)
1.918 

(3)
1.839

(3)
1.936

(2)
2.934 

(3)
2.955 

(3)
2.886   

(3)

Gibbsite 2
1.950 

(3)
1.940 

(3)
1.890 

(2)
1.904 

(3)
1.880

(2)
1.972

(3)
2.955 

(3)
2.885 

(3)
2.869   

(3)
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