

Supporting Information

Quantification of High-Temperature Transition Al_2O_3 and Their Phase Transformations**

Libor Kovarik, Mark Bowden,* Amity Andersen, Nicholas R. Jaegers, Nancy Washton, and János Szanyi*

ange_202009520_sm_miscellaneous_information.pdf

Author Contributions

N.J. Investigation: Supporting; Methodology: Supporting
N.W. Investigation: Supporting; Methodology: Supporting.

SUPPLEMENTARY INFORMATION:

Libor Kovarik^{1*}, Mark Bowden^{2*}, Amity Andersen², Nicholas R. Jaegers¹, Nancy Washton^{1,2},
Janos Szanyi¹

¹ Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352

² Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352

libor.kovarik@pnnl.gov, mark.bowden@pnnl.gov

Transition aluminas investigated in this work were obtained from dehydration of Boehmite (*Sasol*). The samples were heat treated in a tube furnace at 1050°C for a period of 2-48 hours. X-Ray Diffraction (XRD) patterns were collected utilizing a Panalytical MPD Bragg-Brentano diffractometer equipped with Cu K α radiation, a variable divergence slit, and a post-diffraction monochromator. Rietveld refinements of microstructure was performed using recursive stacking approach, as implemented in TOPAS 5. We use super-cell structures built by recursive stacking. The intergrowth structure of δ -Al₂O₃ contains 200 layers and 8000 atoms. The θ -Al₂O₃ contains 500 layers and 5000 atoms.

The effect of structural intergrowth on diffraction intensities for individual phases was evaluated with DIFFAX. DIFFAX is a recursive stacking simulation code developed by Treacy et. al [16] for understanding structural intergrowth.

Intergrowth in $\delta_{1,2}$ -Al₂O₃ is formulated as a recursive stacking of four layers. The rules for stacking of individual layers in $\delta_{1,2}$ -Al₂O₃ and creating an intergrowth structure under the probability of occurrence for each variant are listed in Table S1. The proportion of δ_1 -Al₂O₃ is controlled by probability value ($\delta_1\%$), and δ_2 -Al₂O₃ by probability value $\delta_2\% = (100 - \delta_1\%)$.

Table.S1. Stacking sequence probabilities for the formation of the $\delta_{1,2}\text{-Al}_2\text{O}_3$ intergrowth structure. The values show the probability of the next (i.e. $(n+1)^{\text{th}}$ layer) given the identity of the n^{th} layer. The value of $\delta_1\%$ represents volume fraction of $\delta_1\text{-Al}_2\text{O}_3$ and $\delta_2\%$ the volume fraction of $\delta_1\text{-Al}_2\text{O}_3$.

	Layer 1 (n+1)	Layer 2 (n+1)	Layer 3 (n+1)	Layer 4 (n+1)
Layer 1 (n)	-	$\delta_1\%$	-	$\delta_2\%$
Layer 2 (n)	$\delta_1\%$	-	$\delta_2\%$	-
Layer 3 (n)	-	$\delta_1\%$	$\delta_2\%$	-
Layer 4 (n)	$\delta_1\%$	-	-	$\delta_2\%$

Intergrowth in $\delta_{2,3,4}\text{-Al}_2\text{O}_3$ is formulated as a recursive stacking of eight layers differing only by their rotational and translation arrangement. The rules for stacking of individual layers in $\delta_{2,3,4}\text{-Al}_2\text{O}_3$ intergrowth is listed in Table S2. The sequence of layers for the individual variants in the intergrowth is defined by probability $\delta_x\%$. Unlike in the previous case of $\delta_{1,2}\text{-Al}_2\text{O}_3$, the recursive stacking in $\delta_{2,3,4}\text{-Al}_2\text{O}_3$ requires that the layers are translationally aligned during stacking and these offsets are included in Table S2.

Table.S2. Stacking sequence rules for intergrowth structures of $\delta_{2,3,4}\text{-Al}_2\text{O}_3$, showing probabilities for the $(n+1)^{\text{th}}$ layer given the identity of the n^{th} layer. The value of $\delta_2\%$, $\delta_3\%$, $\delta_4\%$ represents the fractions of $\delta_2\text{-Al}_2\text{O}_3$, $\delta_3\text{-Al}_2\text{O}_3$ and $\delta_4\text{-Al}_2\text{O}_3$ respectively. The layers 5^* , 6^* , 7^* , 8^* are identical with layers 1, 2, 3, 4 but with the origin displaced by $[0.5,0.5,0]$. The numbers in square brackets indicate the translation along x and y required for each stacking operation.

	Layer 1 (n+1)	Layer 2 (n+1)	Layer 3 (n+1)	Layer 4 (n+1)	Layer 5* (n+1)	Layer 6* (n+1)	Layer 7* (n+1)	Layer 8* (n+1)
Layer 1 (n)	-	$\delta_2\%$ $R=[0,0]$	-	$\delta_3\%$ $[-0.25,0.25]$	-	$\delta_4\%$ $[0,0]$	-	-
Layer 2 (n)	$\delta_2\%$ $[0,0]$	-	$\delta_3\%$ $[0,0]$	-	$\delta_4\%$ $[0,0]$	-	-	-
Layer 3 (n)	-	$\delta_3\%$ $[0.25,-0.25]$	-	$\delta_2\%$ $[0,0]$	-	-	-	$\delta_4\%$ $[0,0]$
Layer 4 (n)	$\delta_3\%$ $[0,0]$	-	$\delta_2\%$ $[0,0]$	-	-	-	$\delta_4\%$ $[0,0]$	-
Layer 5* (n)	-	100% $[0.5,0.5]$	-	-	-	-	-	-
Layer 6* (n)	100%	-	-	-	-	-	-	-

	$[0.5, 0.5]$							
Layer 7* (n)	-	-	-	100% $[0.5, 0.5]$	-	-	-	-
Layer 8* (n)	-	-	100% $[0.5, 0.5]$	-	-	-	-	-

Twining in θ -Al₂O₃ can be formulated relatively simply as the recursive stacking of two layers. The rules for recursive stacking in θ -Al₂O₃ are listed in Table S3. The transition from one layer to identical layer corresponds to an un-twinned configuration, while transitions between differing layers corresponds to twinning, with a probability of (twin%). Translational offsets required to accomplish stacking are reported in Table.S3.

Table.S3 Rules for stacking formation of twinning in θ -Al₂O₃.

	Layer 1 (n+1)	Layer 2 (n+1)
Layer 1 (n)	(100-twin)% $R=[-0.25, 0.5]$	twin% $R=[-0.25, 0.5]$
Layer 2 (n)	twin% $R=[0.25, 0.5]$	(100-twin)% $R=[0.25, 0.5]$