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Transition aluminas investigated in this work were obtained from dehydration of Boehmite (Sasol). 

The samples were heat treated in a tube furnace at 1050°C for a period of 2-48 hours. X-Ray 

Diffraction (XRD) patterns were collected utilizing a Panalytical MPD Bragg-Brentano 

diffractometer equipped with Cu Kα radiation, a variable divergence slit, and a post-diffraction 

monochromator. Rietveld refinements of microstructure was performed using recursive stacking 

approach, as implemented in TOPAS 5. We use super-cell structures built by recursive stacking. 

The intergrowth structure of -Al2O3 contains 200 layers and 8000 atoms. The -Al2O3 contains 

500 layers and 5000 atoms. 

The effect of structural intergrowth on diffraction intensities for individual phases was evaluated 

with DIFFAX. DIFFAX is a recursive stacking simulation code developed by Treacy et. al [16] 

for understanding structural intergrowth.  

 

Intergrowth in 1,2-Al2O3 is formulated as a recursive stacking of four layers.  The rules for stacking 

of individual layers in 1,2-Al2O3 and creating an intergrowth structure under the probability of 

occurrence for each variant are listed in Table S1. The proportion of 1-Al2O3 is controlled by 

probability value (1%), and 2-Al2O3 by probability value 2% = (100-1%).    
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Table.S1. Stacking sequence probabilities for the formation of the 1,2-Al2O3 intergrowth structure.  

The values show the probability of the next (i.e. (n+1)th layer) given the identity of the nth layer. 

The value of 1% represents volume fraction of 1-Al2O3 and 2% the volume fraction of 1-Al2O3. 

 

 

 

 

 

 

 

 

Intergrowth in 2,3,4-Al2O3 is formulated as a recursive stacking of eight layers differing only by 

their rotational and translation arrangement. The rules for stacking of individual layers in 2,3,4-

Al2O3 intergrowth is listed in Table S2. The sequence of layers for the individual variants in the 

intergrowth is defined by probability x%. Unlike in the previous case of 1,2-Al2O3, the 

recursive stacking in 2,3,4-Al2O3 requires that the layers are translationally aligned during 

stacking and these offsets are included in Table S2. 

 

 

Table.S2. Stacking sequence rules for intergrowth structures of 2,3,4-Al2O3., showing probabilities 

for the (n+1)th layer given the identity of the nth layer.  The value of 2%, 3%, 4% represents the 

fractions of 2-Al2O3, 3-Al2O3 and 4-Al2O3 respectively. The layers 5*, 6*, 7*, 8* are identical 

with layers 1, 2, 3, 4 but with the origin displaced by [0.5,0.5,0]. The numbers in square brackets 

indicate the translation along x and y required for each stacking operation. 

 

 Layer 1 

(n+1) 

Layer 2 

(n+1) 

Layer 3 

(n+1) 

Layer 4 

(n+1) 

Layer 1 (n) - 1% - 2% 

Layer 2 (n) 1% - 2% - 

Layer 3 (n) - 1% 2% - 

Layer 4 (n) 1% - - 2% 

 Layer 1 

(n+1) 

Layer 2 

(n+1) 

Layer 3 

(n+1) 

Layer 4 

(n+1) 

Layer 5* 

(n+1) 

Layer 6* 

(n+1) 

Layer 7* 

(n+1) 

Layer 8* 

(n+1) 

Layer 1 (n) - 2% 
R=[0,0] 

- 3% 
[-0.25,0.25] 

- 4% 
[0,0] 

- - 

Layer 2 (n) 2% 
[0,0] 

- 3% 
[0,0] 

- 4% 
[0,0] 

- - - 

Layer 3 (n) - 3% 
[0.25,-0.25] 

- 2% 
[0,0] 

- - - 4% 
[0,0] 

Layer 4 (n) 3% 
[0,0] 

- 2% 
[0,0] 

- - - 4% 
[0,0] 

- 

Layer 5* (n) - 100% 
[0.5,0.5] 

- - - - - - 

Layer 6* (n) 100% - - - - - - - 



 

 

 

 

 

 

Twinning in -Al2O3 can be formulated relatively simply as the recursive stacking of two layers. 

The rules for recursive stacking in -Al2O3 are listed in Table S3. The transition from one layer to 

identical layer corresponds to an un-twinned configuration, while transitions between differing 

layers corresponds to twinning, with a probability of (twin%).  Translational offsets required to 

accomplish stacking are reported in Table.S3. 

 

Table.S3 Rules for stacking formation of twinning in -Al2O3.   

 

 

 

 

 

 

 

[0.5,0.5] 

Layer 7* (n) - - - 100% 
[0.5,0.5] 

- - - - 

Layer 8* (n) - - 100% 
[0.5,0.5] 

- - - - - 

 Layer 1 (n+1) Layer 2 (n+1) 

Layer 1 (n) (100-twin)% 
R=[-0.25,0.5] 

twin% 
R=[-0.25,0.5] 

Layer 2 (n) twin% 
R=[0.25,0.5] 

(100-twin)% 
R=[0.25,0.5] 


