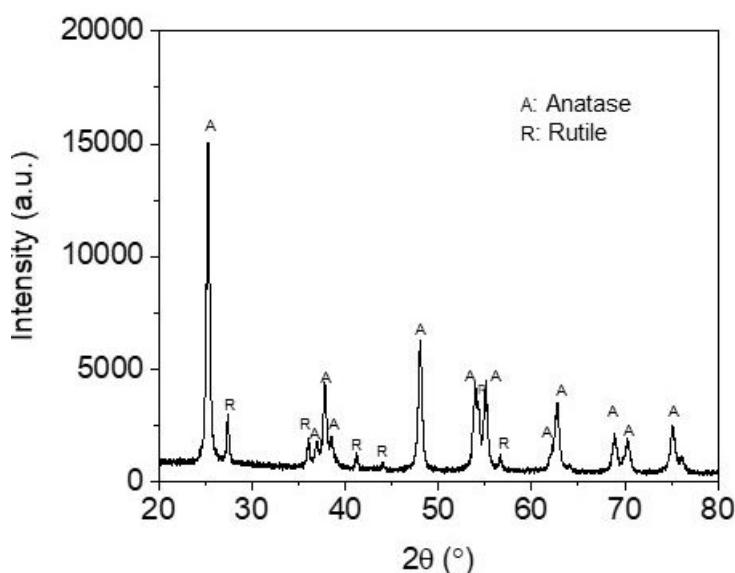


## Supporting Information

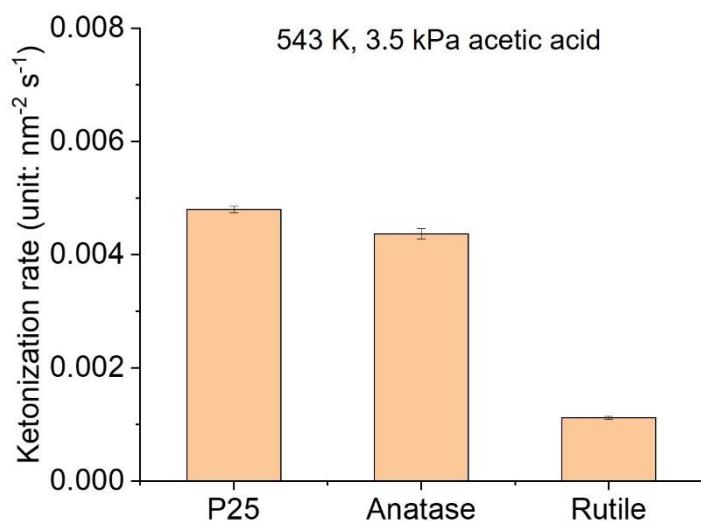
# Elucidation of the roles of water on the reactivity of surface intermediates in carboxylic acid ketonization on TiO<sub>2</sub>

Fan Lin,<sup>1†</sup> Wenda Hu,<sup>1,2†</sup> Nicholas R. Jaegers,<sup>1,2</sup> Feng Gao,<sup>1</sup> Jian Zhi Hu,<sup>1,2,\*</sup> Huamin Wang,<sup>1,\*</sup> Yong Wang<sup>1,2,\*</sup>

<sup>1</sup> Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, USA


<sup>2</sup> The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA

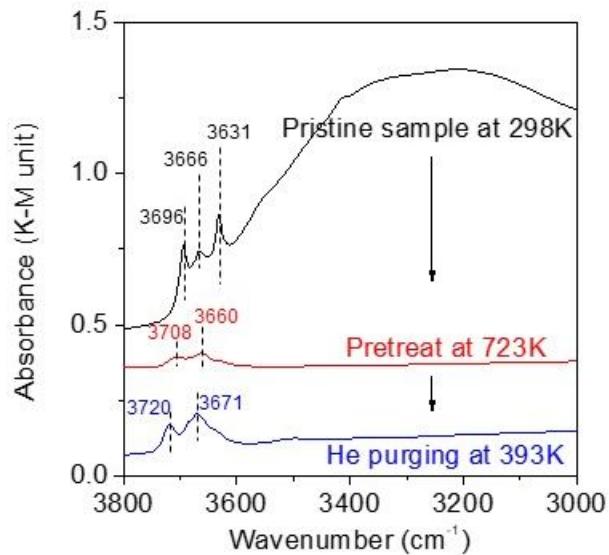
\*[jianzhi.hu@pnnl.gov](mailto:jianzhi.hu@pnnl.gov); [huamin.wang@pnnl.gov](mailto:huamin.wang@pnnl.gov); [yong.wang@pnnl.gov](mailto:yong.wang@pnnl.gov)


†contributed equally

### S1. Predominant catalytic contribution from anatase phase in P25 TiO<sub>2</sub>

XRD (Figure S1) confirms the predominance of the anatase phase in P25 TiO<sub>2</sub> used in this work. Figure S2 compares the specific rates of acetic acid ketonization (unit per nm<sup>2</sup> per s) on the P25 TiO<sub>2</sub> (Sigma Aldrich, 99.5%), a commercial anatase TiO<sub>2</sub> (US Research Nanomaterials, 99.5%, 5nm), and a commercial rutile TiO<sub>2</sub> (Sigma Aldrich, 99.5%) under similar reaction condition (543 K, 3.5 kPa acetic acid). The reaction rates are similar on P25 TiO<sub>2</sub> and the pure anatase samples, whereas the rutile TiO<sub>2</sub> sample has a much lower rate, about 1/4 of the rate on anatase.

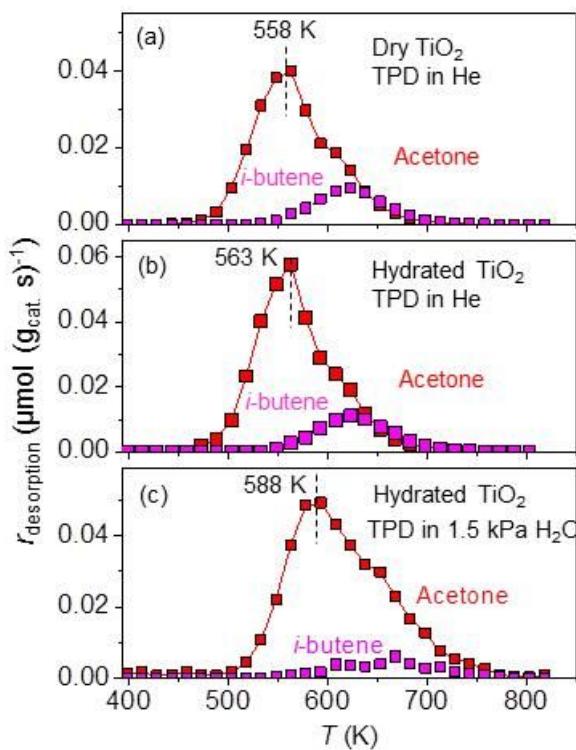



**Figure S1.** XRD profile of TiO<sub>2</sub>(25) catalyst used in this work



**Figure S2.** Specific rates of acetic acid ketonization (per  $\text{nm}^2$ ) on  $\text{TiO}_2$ (P25) (Sigma Aldrich, 99.5%), anatase (US Research Nanomaterials, 99.5%, 5nm), and rutile (Sigma Aldrich, 99.5%) (543 K, 3.5 kPa acetic acid).

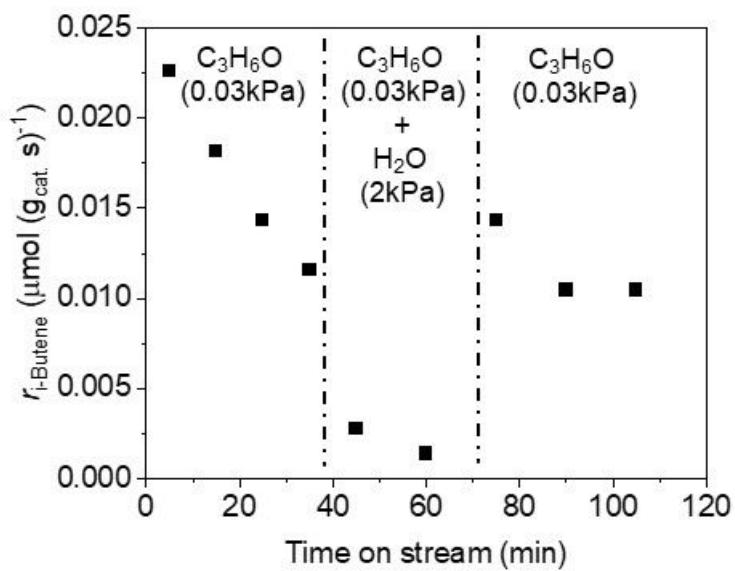
## S2. DRIFTS


The stability of the surface hydroxyl groups on  $\text{TiO}_2$  catalyst was examined with Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Figure S3 shows the DRIFTS spectra of the  $\text{TiO}_2$  catalyst before, during, and after 723 K treatment in He. The pristine  $\text{TiO}_2$  before treatment shows surface hydroxyl bands at 3696, 3666, and  $3631 \text{ cm}^{-1}$ . The broad band ranging from 3600 to 3000  $\text{cm}^{-1}$  is ascribed to O-H stretching of H-bonded  $\text{H}_2\text{O}$  molecules on the surface. After heated to 723K, the adsorbed  $\text{H}_2\text{O}$  molecules are removed, but some hydroxyl groups at 3708 and  $3660 \text{ cm}^{-1}$  still remain on  $\text{TiO}_2$  surface, indicating the stability of these surface hydroxyl groups. The shift of the OH peak positions in comparison to the pristine sample is likely associated with the removal of  $\text{H}_2\text{O}$  and higher temperature. After  $\text{H}_2\text{O}$  removal at high temperature, the sample was cooled down to 393K. The two OH peaks shift to higher frequencies at 3720 and  $3671 \text{ cm}^{-1}$ , respectively.



**Figure S3.** DRIFTS spectra of  $\text{TiO}_2$  catalyst pretreated at 723 K followed by cooling to 393 K in He

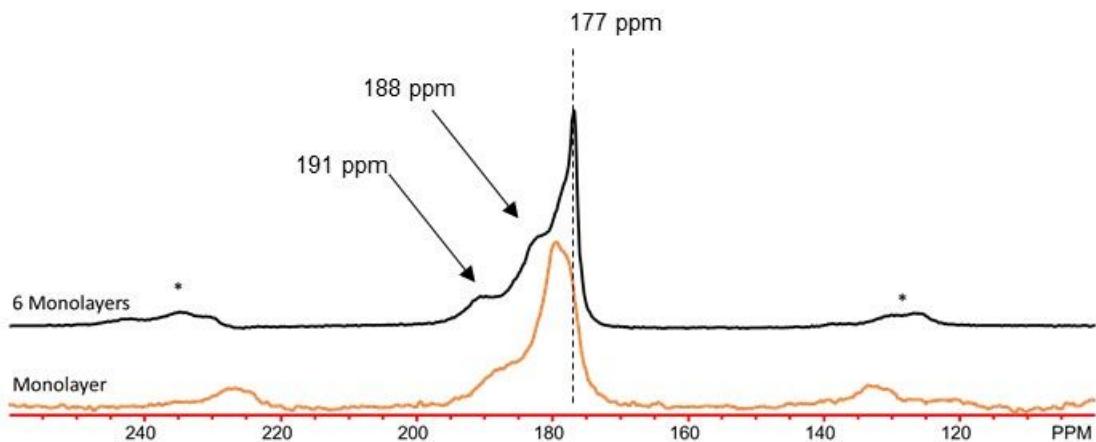
### S3. Acetic acid-TPD


The impact of  $\text{H}_2\text{O}$  on the reactivity of adsorbed acetic acid species on  $\text{TiO}_2$  were investigated with adsorption and temperature-programmed desorption of acetic acid (acetic acid-TPD). As discussed in the main manuscript, acetic acid-TPD releases the ketonization product acetone. The desorption peak temperature of the dry  $\text{TiO}_2$  in He (558K, Figure S4a) is lower than that of hydrated  $\text{TiO}_2$  in 1.5 kPa  $\text{H}_2\text{O}/\text{He}$  (588K, Figure S4c), the adsorbed acetic acid species are more reactive on dry  $\text{TiO}_2$  than on hydrated  $\text{TiO}_2$ . However, when we pre-hydrated  $\text{TiO}_2$  catalysts with 1.5 kPa  $\text{H}_2\text{O}$  at 393 K, followed by conducting acetic acid -TPD in He without cofeeding  $\text{H}_2\text{O}$  vapor (Figure S4b), the TPD profile looked similar to that of dry  $\text{TiO}_2$  (Figure S4a). This suggests that it is the molecular  $\text{H}_2\text{O}$  instead of the surface hydroxyl groups that causes activity decrease.



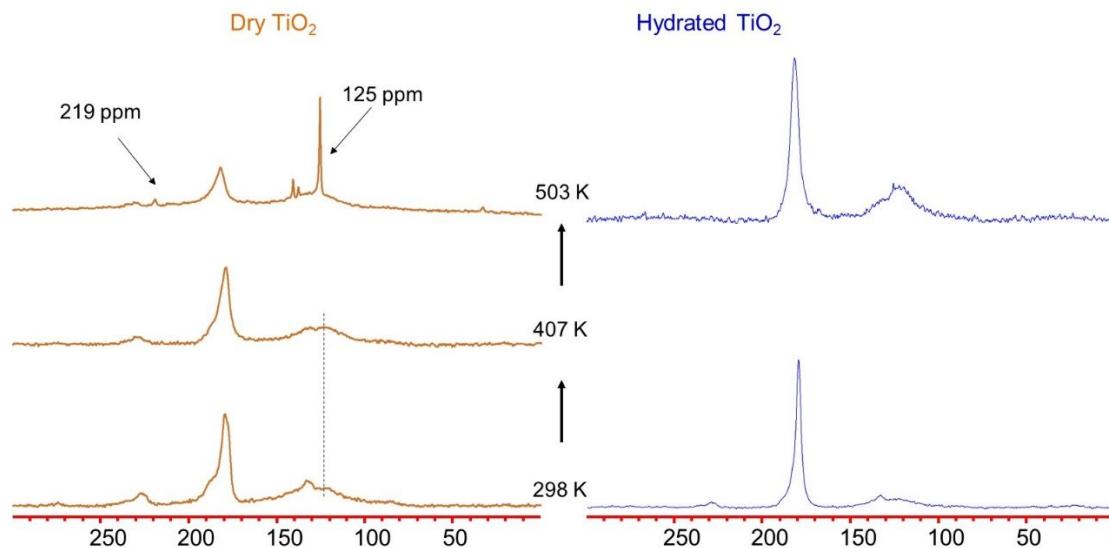
**Figure S4.** Profiles of acetic acid-TPD on the dry and hydrated  $\text{TiO}_2$  catalysts (acetic acid adsorption temperature 393 K): (a) dry  $\text{TiO}_2$  with acetic acid adsorption and TPD in He; (b) pre-hydrated  $\text{TiO}_2$  with acetic acid adsorption and TPD in He; (c) pre-hydrated  $\text{TiO}_2$  with acetic acid adsorption and TPD in 1.5 kPa  $\text{H}_2\text{O}/\text{He}$ .

#### S4. Isobutene formation by acetone reaction on $\text{TiO}_2$


Figure S5 shows the rate of isobutene formation during acetone reaction on  $\text{TiO}_2$  catalyst at 623 K as a function of time-on-stream. When acetone was feed as the only reactant feed, deposition of heavy condensation products led to fast catalyst deactivation, so the isobutene formation rate decreases with time-on-stream. Cofeeding 2 kPa of  $\text{H}_2\text{O}$  strongly inhibited the acetone reactions and suppress isobutene formation. The strong inhibition effect was due to the competitive adsorption. Upon stopping  $\text{H}_2\text{O}$  cofeeding, the isobutene formation rate was recovered. This result is in line with the suppression of isobutene formation by introducing water in the acetic acid-TPD, as shown in Figure 7.



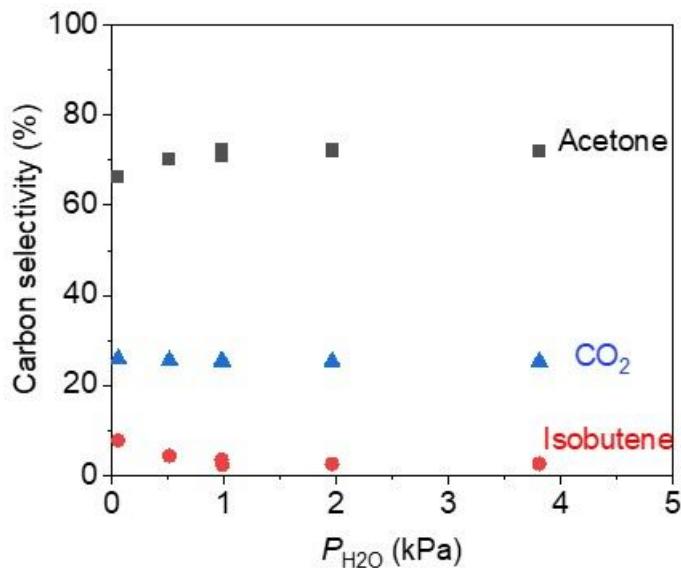
**Figure S5.** Rate of isobutene formation ( $r_{i\text{-Butene}}$ ) during acetone reaction on  $\text{TiO}_2$  as a function of time, with and without cofed  $\text{H}_2\text{O}$  (623 K, acetone pressure 0.03 kPa, cofed  $\text{H}_2\text{O}$  pressure 2 kPa).


## S5. NMR

An excess amount of acetic acid addition was used to confirm the assignment as well as the impact on adsorption configurations, shown in Figure S6. It is clearly shown that after adding 6 monolayers of acetic acid on  $\text{TiO}_2$  surface, the peak signal at 177 ppm increased, confirming the assignment of molecular acetic acid adsorption. The reason for the slight enhancement in signal is that cross polarization is not able to detect bulk phase acetic acid which maintains random and fast movement. In the meantime, with excessive amount of acetic acid, the chelating bidentate species become more electron-deshielded due to the interaction with molecular acetic acid, manifested by downfield chemical shifting from 188 ppm to 191 ppm. The monodentate acetate species also transformed to bridging bidentate acetate owing to the interaction with excessive molecular acetic acid. These transformation and electron interaction can be the indication that the surface adsorption species is also dependent on the acetic acid partial pressure in the flowing system.



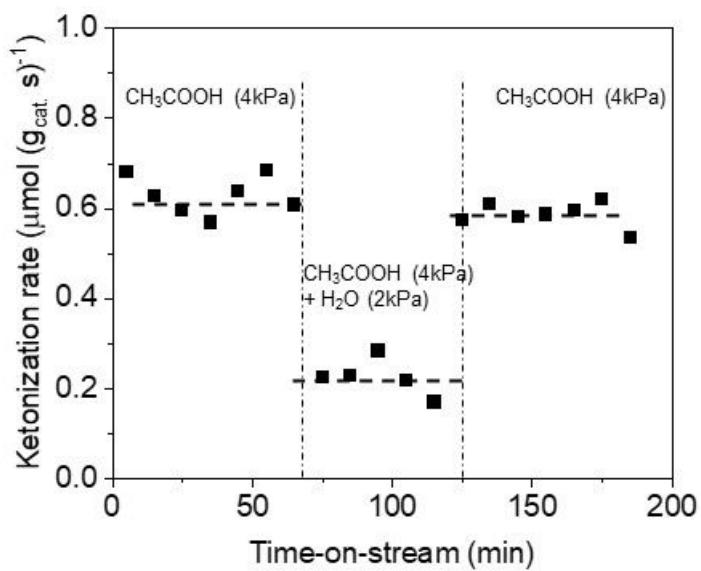
**Figure S6.**  $^1\text{H}$ - $^{13}\text{C}$  CP MAS NMR spectra of monolayer-adsorbed acetic acid with excess acetic acid on dry  $\text{TiO}_2$  (\* indicates spinning sidebands).


Using  $^{13}\text{C}$  direct polarization can detect all the species formed in the rotor during the operando measurement, shown in Figure S7. All the signals should be consistent and identical to  $^1\text{H}$ - $^{13}\text{C}$  CP MAS NMR except that gas species formed with temperature ramping that cannot be detected by cross polarization technique in Figure 5. As temperature increased to 503 K, products can be easily detected in dry  $\text{TiO}_2$  surface, such as acetone peak at 219 ppm,  $\text{CO}_2$  peak at 125 ppm and other reaction products between 130-140 ppm. However, in the case of hydrated  $\text{TiO}_2$ , products are barely detected, further demonstrating the inhibition effect of water on ketonization reaction.



**Figure S7.**  $^{13}\text{C}$  DP MAS NMR spectra of dry and hydrated  $\text{TiO}_2$  surfaces saturated by acetic acid at room and elevated temperatures.

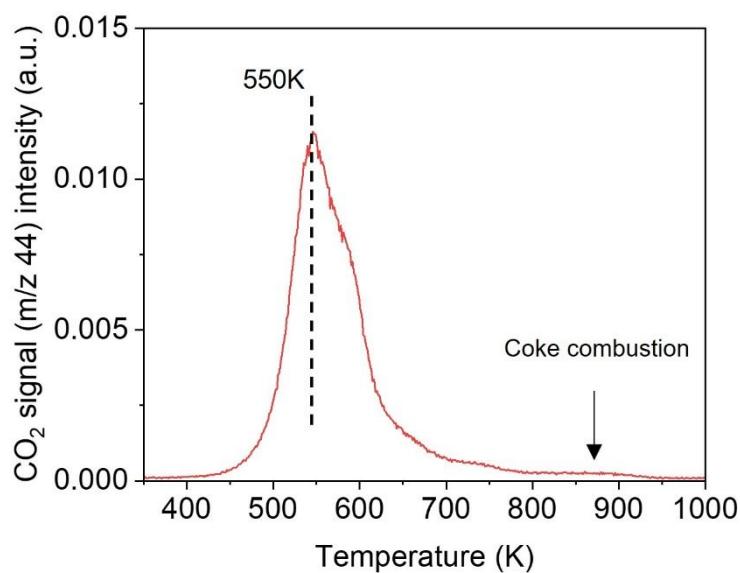
## S6. Reaction selectivity


Figure S8 shows the carbon selectivity for primary (acetone and  $\text{CO}_2$ ) and secondary (isobutene) products in the acetic acid ketonization on P25  $\text{TiO}_2$  as a function of water pressure at low acetic acid conversions of 3-5%. Isobutene, as the secondary product, only accounts for <10% carbon selectivity. As the water pressure increase, the selectivity of isobutene decreases, indicating water also inhibits the secondary reaction of acetone.



**Figure S8.** Carbon selectivity of primary and secondary products for the ketonization pathway of acetic acid reaction on  $\text{TiO}_2$  as a function of water pressure (543 K, with acetic acid saturated catalyst surface, acetic acid pressure=5-15 kPa)

## S7. Reversibility of the water impact


As shown in Figure S9, during the steady state acetic acid ketonization on  $\text{TiO}_2$ (P25) at 543 K, cofeeding 2kPa of water decreased the rate. When the water cofeeding was stopped after 1h, the reaction rate was fully restored. This confirms that at temperature range of the activity test (<543 K) the presence of  $\text{H}_2\text{O}$  does not induce any phase change



**Figure S9.** Rate of acetic acid ketonization on  $\text{TiO}_2$  as a function of time-on-stream (543 K, 4 kPa acetic acid, 2kPa water)

## S8. TPO of spent catalyst

Figure S10 shows the TPO profiles of the spent catalysts (after acetic acid reactions without co-fed  $\text{H}_2\text{O}$ ). The major  $\text{CO}_2$  formation occurred at around 450-600 K and peaked at around 550 K. Typically, coke combustion has a much higher peak temperature (e.g. 650K-750K for “soft coke” and >800 K for “hard coke”) on the non-redox catalysts/supports like  $\text{TiO}_2$ <sup>1</sup> and zeolites.<sup>2</sup> Thus the major low-temperature peak (~550 K) of the spent  $\text{TiO}_2$  is not associated with coke species. Instead, it is the combustion of acetate intermediates strongly bonded on the spent catalysts. The weak shoulder above 800 K is likely related to a very small amount of coke formation. Together with the stable activity shown in Figure S9, we believe that the catalyst deactivation during the rate measurement is minimal and can be negligible.



**Figure S10.** TPO (temperature program oxidation) profiles of spent TiO<sub>2</sub> catalysts after 2h of acetic acid reaction without co-fed H<sub>2</sub>O (543 K, 3kPa acetic acid, TOS=2h).

## References

1. Guntida, A.; Wannakao, S.; Praserthdam, P.; Panpranot, J., Acidic nanomaterials (TiO<sub>2</sub>, ZrO<sub>2</sub>, and Al<sub>2</sub>O<sub>3</sub>) are coke storage components that reduce the deactivation of the Pt–Sn/γ-Al<sub>2</sub>O<sub>3</sub> catalyst in propane dehydrogenation. *Catal. Sci. Technol.* **2020**, *10* (15), 5100-5112.
2. Sørensen, M. D. P., The establishment of a coke-burn kinetic model for zeolite catalysts. *Chemical Engineering Science* **2017**, *168*, 465-479.